National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Switched Mode Power Supplies
Španěl, Petr ; Lettl,, Jiří (referee) ; Kadaník,, Petr (referee) ; Procházka, Petr (advisor)
This thesis deals with switched mode power supplies based on resonant principle to achieve high efficiency. Several ways of switched mode power supplies optimalisation are described as part of the work to achieve better efficiency. Priparily, the new generation of switching elements based on SiC and resonant topology are used to achieve significant switching loss minimization. The selected resonant topology is simualted in detail and then built with focus on high efficiency. The main content of the work consists in the design and realization of the switched mode power supply with selected control algorithms and their comparison. The problems associated with usage of new SiC MOSFET generation in TO-247-4L package are being solved within the design and implementation of the power source. To solve the main problems, new 3rd SiC MOSFET gate driver was developer for working with switching frequencies in hundreds of kHz and resisting very high voltage stress on the controlled transistor. The next part of the gate driver is the overcurrent protection. The overcurrent limit can be set easily by changing one component. This protection reacts very quickly in hundreds of nanoseconds, so it is capable of saving the converter even in branch failure and going to hard short circuit. The functional sample of the series resonant converter was built and revated in the work. The converter based on 3. Generation of SiC MOSFET transistors from Cree in a modern case TO-247-4L was built. For this inverter, it was also necessary to develop both the control scheme and the resonance frequency tracking to achieve accurate switching and thus achieve the use of the resonant principle of the converter to the maximum extent possible. The result of this work is up to 3 kW converter with adjustable output voltage while maintaining high efficiency up to 96%.
Push-pull quasi-resonant DC/DC converter with a transformer
Dvořák, Petr ; Vorel, Pavel (referee) ; Martiš, Jan (advisor)
This diploma thesis deals with analysis of function and subsequent construction of a quasi-resonant DC / DC converter 300 V / 50 V for an output of about 1.5 kW. The aim of this work is to test and describe the behavior of an experimental converter at various operating parameters. In the theoretical part, resonant circuits are described, as well as our connection of the resonant converter. Based on the used topology and the simulated behavior of the converter, the individual components of the power circuit and its control and excitation circuit are designed in Chapters 4 and 5. The sixth chapter deals with the construction and testing of the converter, including a description of its behavior. The last chapter contains technical documentation.
Switched Mode Power Supplies
Španěl, Petr ; Lettl,, Jiří (referee) ; Kadaník,, Petr (referee) ; Procházka, Petr (advisor)
This thesis deals with switched mode power supplies based on resonant principle to achieve high efficiency. Several ways of switched mode power supplies optimalisation are described as part of the work to achieve better efficiency. Priparily, the new generation of switching elements based on SiC and resonant topology are used to achieve significant switching loss minimization. The selected resonant topology is simualted in detail and then built with focus on high efficiency. The main content of the work consists in the design and realization of the switched mode power supply with selected control algorithms and their comparison. The problems associated with usage of new SiC MOSFET generation in TO-247-4L package are being solved within the design and implementation of the power source. To solve the main problems, new 3rd SiC MOSFET gate driver was developer for working with switching frequencies in hundreds of kHz and resisting very high voltage stress on the controlled transistor. The next part of the gate driver is the overcurrent protection. The overcurrent limit can be set easily by changing one component. This protection reacts very quickly in hundreds of nanoseconds, so it is capable of saving the converter even in branch failure and going to hard short circuit. The functional sample of the series resonant converter was built and revated in the work. The converter based on 3. Generation of SiC MOSFET transistors from Cree in a modern case TO-247-4L was built. For this inverter, it was also necessary to develop both the control scheme and the resonance frequency tracking to achieve accurate switching and thus achieve the use of the resonant principle of the converter to the maximum extent possible. The result of this work is up to 3 kW converter with adjustable output voltage while maintaining high efficiency up to 96%.
Push-pull quasi-resonant DC/DC converter with a transformer
Dvořák, Petr ; Vorel, Pavel (referee) ; Martiš, Jan (advisor)
This diploma thesis deals with analysis of function and subsequent construction of a quasi-resonant DC / DC converter 300 V / 50 V for an output of about 1.5 kW. The aim of this work is to test and describe the behavior of an experimental converter at various operating parameters. In the theoretical part, resonant circuits are described, as well as our connection of the resonant converter. Based on the used topology and the simulated behavior of the converter, the individual components of the power circuit and its control and excitation circuit are designed in Chapters 4 and 5. The sixth chapter deals with the construction and testing of the converter, including a description of its behavior. The last chapter contains technical documentation.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.